May 30, 2022
#2626: d65536 explain
[A large sphere with a several lines, and in some places grids, are shown. Cueball, standing next to it, is dwarfed by its size, as it is at least seven times as tall as he is. The sphere has many lines following various great circles or parallel lesser circles around the curve of the sphere, and some patches of cross hatching to suggest further texturing along these lines hovering just below the degree of most of the illustrative detailing. The lines and grids cover the sphere in three layers of parallel axes, angled sixty degrees from each other, implying a huge mesh of equilateral triangles or hexagons. In the top right part of the ball is a black circle. An arrow points to this circle, and the end of the arrow goes to a larger circle that partly obscures the rightmost part of the sphere. The circle shows a zoom in on the surface in the black circle on the sphere. The zoom shows a small portion of the sphere’s surface, showing that the grid comes along because the sphere is divided into elongated hexagonal faces with numbers up to at least five-digits. Seven numbers can be fully seen, but there are nine other faces partly shown, five of these with part of their numbers visible, one of these clearly only have four digits. One of the empty faces must also have a number with only 1-3 digits, as no numbers are visible although a significant part of the face is visible.]
[Here follows the numbers in the zoomed in part of the sphere, with “…” represents numbers being cut off. The numbers are read in lines left to right, even though the numbers are tilted from down towards the right, which could have suggested a different reading order.]
30827
16[bottom part of a cut-off line][small cut-off circle]
…38
11875
25444
…[top part of a cut-off line]5
12082
28525
3 [left part of a cut-off line]…
13359
13874
[Two cut-off lines, likely the start of the number 2]…
[Caption below the image:]
The hardest part of securely generating random 16-bit numbers is rolling the d65536.